会员登录 - 用户注册 - 设为首页 - 加入收藏 - 网站地图 AI能有效简化量子问题任务量 十万个方程减为四个!

AI能有效简化量子问题任务量 十万个方程减为四个

时间:2025-07-06 22:11:26 来源:八面见光网 作者:时尚 阅读:231次

科技日报北京9月28日电 (记者张梦然)通过使用人工智能(AI),效简美国物理学家将一个令人生畏的化量涉及10万个方程的量子问题压缩到一个仅有4个方程的小任务中,且没有牺牲准确性。问题发表在《物理评论快报》上的任务该项研究,可能会彻底改变科学家对包含许多相互作用电子的量万系统的研究方式。如扩展到其他问题,个方该方法还有助于设计具有超导性或清洁能源发电效用等受欢迎特性的程减材料。

电子在网格状晶格上移动时的效简行为方式堪称是令人生畏。当两个电子占据相同的化量晶格位置时,它们会相互作用。问题哈伯德模型是任务理解强相关电子系统的模型,使科学家能够了解电子行为如何产生物质相,量万例如超导性,个方其中电子就在没有阻力的程减情况下流过材料。在将新方法应用于更复杂的效简量子系统之前,该模型还可作为新方法的试验框架。

然而,哈伯德模型看似简单,但即使是解决仅涉及少量电子的问题,也需要强大的计算能力。这是因为当电子相互作用时,它们会变成量子力学纠缠:即使它们在不同的晶格位置相距很远,这两个电子也不能单独处理,所以物理学家必须同时处理所有电子,而不是一次处理一个电子。电子越多,纠缠出现也越多,使计算量成倍增加。

研究量子系统的一种方法是使用所谓的重整化群。这是物理学家用来观察系统行为(例如哈伯德模型)在修改温度等属性时如何变化的数学工具。不幸的是,一个跟踪电子之间所有可能的耦合且不牺牲任何东西的重整化群可能包含数万、数十万甚至数百万个需要求解的方程。每个方程式代表一对相互作用的电子,因此非常棘手。

纽约熨斗研究所计算量子物理中心(CCQ)研究人员使用神经网络工具来使重整化群更易于管理。首先,机器学习程序在全尺寸重整化群内创建了连接。然后,神经网络调整这些连接的强度,直到找到一小组方程,这些方程生成的解与原始的超大尺寸重整化群相同。即使只有4个方程,该程序的输出也能捕捉到哈伯德模型的物理特性。

训练机器学习程序需要大量的计算能力,因此程序运行了整整几周。CCQ研究员多米尼克·桑特表示,他们已经实现对程序进行调整来解决其他问题,而无需从头开始。未来,研究人员将探索新方法在更复杂量子系统上的效果,例如材料中电子的长距离相互作用。

(责任编辑:知识)

相关内容
  • 当考古遇上人工智能
  • 三方联手打造海事航保融合发展“湛江示范区”
  • 联合国警告:全球灾害事件将猛增
  • 重庆为房地产降税5个点,本土国资房企股价涨停
  • 议价能力差,原材料供应存隐忧!IDG突发入股,Growatt能否俘获港股投资者的心?
  • 突发!人民币一度急跌600点,吓坏A股跳水?
  • 小摩:上调广汽集团至增持评级 目标价9港元
  • 中国人民银行金融信息中心技术总体部原主任詹浩接受纪律审查和监察调查
推荐内容
  • 金融街论坛释放重磅信号:货币政策自主性增强,持续支持房地产市场健康发展
  • 全球债券迈向历史最差月度表现 下周或迎来一连串加息
  • 中泛控股9292万美元卖夏威夷地块:将提供现金流以偿还债务
  • 欧洲买家要服软了?欧洲天然气价格连涨两日后跌超5%
  • 突发!北京通州广通小区一人初筛阳性,小区临时封控只进不出
  • 山西吕梁20条扶持措施为企业“纾困补短”